Working with Numbers

Types of number

Factors Numbers that divide into a number exactly

e.g. the factors of 12 are 1, 2, 3, 4, 6 and 12

Whole Counting numbers including 0

numbers e.g. 0, 1, 2, 3, 4, 5...

Integers Positive and negative numbers including 0 that

are not fractions or decimals

e.g. -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5...

Multiples In a "times table"

e.g. multiples of 5 include 5, 10, 15, 20, 25...

Square A square number is a number multiplied by itself

e.g. 5^2 is the same as $5 \times 5 = 25$

Square root e.g. $\sqrt{4} = 2$ because $2 \times 2 = 4$

Prime A number with only two factors, 1 and the number

number itself e.g. $3 = 1 \times 3$

Rounding

Rounding is where a number is made into an approximate amount. A number can be rounded off to the tenth, whole number, ten, hundred, thousand, etc.

e.g. 37 to the nearest ten = 40 832 to the nearest hundred = 800

A number that lies half way between tens, hundreds, thousands, etc. is always rounded up, numbers below this are rounded down.

e.g. 6.5 rounded to the nearest whole number = 7 748 rounded to the nearest hundred = 700

Calculations: Addition

Step 1 Use a number line to add in steps

Step 2 Use partitioning into ones, tens, hundreds

Step 3 Start to use the expanded column method

Step 4 With practice, you will be able to use the column method

$$258 + 87 = 345$$

$$258 + 87 = 345$$

$$345$$
11

Calculations: Subtraction

Step 1 Use a number line to 'take away' in steps

$$74 - 27 = 47$$

$$47 \quad 50 \quad 54$$

$$-20$$

$$47 \quad 50 \quad 54$$

You can also count up from the smaller number to find the difference

Step 2 Use partitioning

$$\begin{array}{c}
(70 + 4) \\
- (20 + 3) \\
\hline
50 + 1 = 51
\end{array}$$

Step 3 Move on to three-digit numbers

$$\begin{array}{c}
(500 + 60 + 3) \\
- (200 + 40 + 1) \\
\hline
300 + 20 + 2 = 322
\end{array}$$
Harder
$$\begin{array}{c}
(500 + 60 + 3) \\
- (200 + 40 + 1) \\
\hline
300 + 20 + 2 = 322
\end{array}$$

$$\begin{array}{c}
(500 + 60 + 3) \\
- (200 + 40 + 1) \\
\hline
(500 + 60 + 3) \\
\hline
(500 + 60 + 3) \\
\hline
(500 + 60 + 3) \\
\hline
(500 + 60 + 1) \\
\hline
(500 + 60 + 3) \\
\hline
(500 + 80 + 5) = 285
\end{array}$$

Step 4 After time, you will be able to use the column method

Calculations: Multiplication

Know that
$$3 \times 4 = 4 \times 3$$
 and
$$2 \times 45 = 45 \times 2$$

Step 2

Know that	2 × 37 (or 37 × 2)
is the same as	$(2 \times 7) + (2 \times 30)$

Step 3

ose the grid metrica			
show your working on a grid			

Use the arid method

X 2

30	60	(2 x 30)
7	14	(2 x 7)
9	74	

Step 4

Step 5

Reduce the amount of writing	
by using short multiplication	

Calculations: Multiplication

Step 6

Know that

$$45 \times 23 = (3 \times 5) + (3 \times 40) + (20 \times 5) + (20 \times 40)$$

Step 7

Show your working on a grid

×	20	3
40	800	120
5	100	15

45 × 23 =
$$(3 × 5) + (3 × 40) + (20 × 5) + (20 × 40)$$

= $15 + 120 + 100 + 800$
= **1035**

Step 8

Expanded long multiplication for 2-digit numbers

Step 9

Long multiplication

Calculations: Division

Step 1

Know how division is related to multiplication

$$5 \times 8 = 40$$
 $40 \div 8 = 5$
 $40 \div 5 = 8$

Step 2

Use repeated subtraction

e.g. find out how many 4s there are in 16

Step 3

The expanded method e.g.

The answer is between 20 and 30, because
$$20 \times 3 = 60$$
 $30 \times 3 = 90$ (too many)

Finally we divide 21 by three to give 7 with no remainder

Tens Units

27

3 8 1

-60 (20 x 3) We take 20 x 3 away from 81 to leave 21

Calculations: Division

Step 4 - Short division

Step 5 - Short division with remainders

$$\frac{64 \text{ r 2}}{3 \sqrt{19^{14}}}$$
 Answer: 64 r 2 or 64 2/3

Step 6 - Long division with remainders

Step 7 - Long division where the answer has up to 2 decimal places